
QAML: A Multi-Paradigm DSML for Quantitative Analysis

of Embedded System Architecture Models
Dominique Blouin, Eric Senn

Lab-STICC Université de Bretagne-Sud
56321 Lorient Cedex, France

+33 (0)2 97 87 45 26

{dominique.blouin, eric.senn}@univ-ubs.fr

Kevin Roussel, Olivier Zendra

Centre de recherches INRIA Nancy Grand-Est
54603 Villers-les-Nancy Cedex

+33 3 83 59 30 00

{kevin.roussel, olivier.zendra}@inria.fr

ABSTRACT

In this paper, the QAML (Quantitative Analysis Modeling

Language) DSML is presented. It is a formalism for representing

quantitative analysis models applied to embedded system

architecture models. Issued from the need to standardize the

representation of heterogeneous power consumption analysis

models, QAML has been generalized to support the analysis of

arbitrary physical quantities. Following a Multi-Paradigm

Modeling (MPM) approach and the principle of separation of

concerns, QAML combines a set of DSMLs such as the SysML

QUDV annex, the W3C MathML and other custom DSMLs to

favor interoperability and reuse. Using an enhanced Atlas Model

Weaving language, embedded systems architecture models of

arbitrary languages such as AADL can be annotated with

quantitative estimation models issued from measurements

campaigns, numerical simulations or other means. The complete

set of models in the MPM environment is interpretable to provide

analysis results in system architecture models.

Categories and Subject Descriptors
D2.2 [Design Tools and Techniques]

General Terms
Design, Languages

Keywords

Model Analysis, DSL, DSML, ADL, AADL, SysML, MPM,

MathML.

1. INTRODUCTION
The purpose of Model Based Engineering (MBE) is to discover

and solve system level problems early in the development cycle

through analysis of various qualities of models. Many of these

qualities such as resources consumption, timing, latency, etc. are

often expressed in a quantitative manner with a system of units.

Model analyses are typically performed with dedicated tools that

extract specific properties from an input design model, perform

the analysis, and optionally re-inject the analysis results into the

input model.

An example of this is the Consumption Analysis Toolbox CAT

[1], which integrates power consumption estimation models into

AADL-based designs. These estimation models are often

constructed using the FLPA (Functional Level Power Analysis)

[2] method, where measurements are performed to characterize

stimulated hardware components. FLPA models are typically

represented as a set of mathematical laws, or multi dimensional

data tables from which the estimates are interpolated. The main

advantage of FLPA models is that they are accurate and fast to

compute (many times faster that cycle-level accurate simulations).

They are therefore much better suited for design space

exploration. However, they suffer from a reduced applicability,

since a model is only suitable for the specific type of the

component (manufacturer / model) on which the measurements

were taken. As a result, FLPA models, if adopted by the industry

will be extremely numerous, and in an ideal scenario, they could

even be part of components datasheets.

A problem with most analysis tools such as CAT is that the

underlying analysis models are rarely represented with an

adequate formalism. For instance, in CAT, the models are

represented as Java or C++ code embedded in Eclipse plugins,

and a qualified programmer is needed every time a new model

must be integrated into the tool.

On the other hand, there is panoply of Architecture Description

Languages (ADLs) available for modeling embedded systems.

Well known languages are the Architecture Analysis and Design

Language (AADL) [3], the Modeling and Analysis of Real-Time

and Embedded Systems (MARTE) UML profile [4], the

AUTomotive Open System Architecture (AUTOSAR) [5], and the

Systems Modeling Language (SysML) [6]. Quantitative analyses

are needed for all these languages, but the problem is that tools

are often interfaced with a single language, and model

transformations must be developed for interoperability. This

introduces additional complexity in the analysis process, such as

model synchronization that must be performed when several

design models of the same system (but different languages) need

to coexist.

The contribution of this work is to solve these problems by

providing a new DSML and toolset as means to quickly integrate

new analysis into MBE design tool chains, without the need for an

expert programmer. This DSML, called QAML for Quantitative

Analysis Modeling Language, has been designed so that

quantitative models are self contained and remain independent

from any ADL. Once a model has been stored in a library, it can

be shared across design models of various ADLs, since only a thin

weaving model needs to be created to associate a quantitative

model with a design model. User-friendly editors have been

developed for this purpose, and ideally, designers should be able

create by themselves the needed quantitative models and associate

them with their designs. Once associated, a quantitative analysis

model is automatically interpreted to update the design with the

analysis results. Analysis models are automatically re-evaluated as

properties of the design model on which they depend are changed,

thus maintaining the analysis results consistent with the design.

QAML has been designed according to Multi-Paradigm Modeling

(MPM) [7], following a separation of concerns principle to favor

the reuse of existing languages such as QUDV (Quantity Units

Dimensions Values) [11], MathML [12], and AMW (Atlas Model

Weaver) [13]. Reusing these languages allowed saving

tremendous modeling efforts. QAML has been implemented as set

of Eclipse plugins with the EMF framework [8], and tested with

the Open Source AADL Tool Environment (OSATE) [9] in the

frame of the Open-PEOPLE project [10].

This paper is structured as follows: section 2 introduces the

language by presenting its composing DSMLs. Section 3 presents

a simple use-case showing static power analysis of a video

processing embedded system. In section 4, related work is

compared and finally, the paper is concluded with a discussion on

the assets and weaknesses of the language, and the research

directions to resolve them.

2. LANGUAGE OVERVIEW
The architecture of QAML follows a separation of concerns

principle in an MPM approach. MPM advocates that every aspect

of a problem should be formalized with an appropriate DSML to

avoid implicit information potentially leading to misinterpretation

and errors. DSMLs of independent domains should remain

independent of each other and controlled in size by including only

the artifacts needed for representing the domain at the right level

of abstraction for the problems to be solved.

Figure 1 depicts the overall architecture of the QAML language,

where each ellipse represents a language covering a sub-domain

of the more global quantitative analysis domain. Arrows between

the languages indicate composition dependencies of various

natures. A <<use>> dependency means that the language from

which the arrow origins directly refers to concepts of the other

language via its class’s properties. The <<extends>> dependency

is stronger as some classes of one language extend classes of the

other language. Finally, the <<agnostic use>> dependency is the

weakest of all. It only holds at the M1 level where models of a

given language refer to instances of models of other languages

through un-typed references; both languages do not have any

explicit dependency in their meta-models. The next sections

briefly introduce all sub-languages that compose QAML.

2.1 QUDV (Quantities and Units)
For quantitative analyses, a solid foundation of well-defined

quantities, units and dimensions is crucial. Indeed, severe errors

have occurred in systems just because dimensions and units had

not been formalized, and mismatched those of other integrated

systems. In a search for an existing language covering the domain

of quantities and units, QUDV [11] was quickly identified as the

best choice, due to its excellent coverage of the domain and

precise semantics for unit conversions and verification of

consistency.

QUDV stands for Quantity Units Dimension Values and is an

annex of SysML. For this project the QUDV UML profile has

been implemented as a DSML. It has the ability to represent

systems of quantities and units such as the International System of

Units (SI) or any other arbitrary units system. The main concepts

are Quantity, Quantity Kind and Unit. A quantity of a given

quantity kind contains a numerical value expressed in a particular

measurement unit. Simple Quantity Kinds provide the basis for

defining other quantity kinds via specialization or derivation.

Each quantity kind may have an expression of its dependence in

terms of base quantity kind(s) of a System of Quantities, so that

dimension analysis can be performed and errors detected

automatically. Specialized quantity kinds are variants of more

general quantity kinds (thus inheriting the same units).

Figure 1. An overview of the architecture of QAML.

2.2 EQML (Estimates)
Another essential aspect of any quantitative analysis is estimates

and their uncertainty, indicating how the analysis results can be

trusted. In science, an estimate without uncertainty is useless, and

formalizing uncertainty with a dedicated language is essential. No

DSML was found covering this domain, which justified the

development of the EQML language (Estimated Quantity

Modeling Language). Figure 2 shows the meta-model of EQML,

where QUDV is used to represent quantities and units. EQML

supports the representation of estimates of various kinds from

simple intervals (value ± uncertainty) to complex probability

distributions functions of random variables. Functions are

represented using concepts from other languages; namely LUTML

and MathML that are introduced in the following sections.

Figure 2. The meta-model of EQML.

2.3 LUTML (Lookup Tables)
Analyses of all kinds are often performed with simulation tools,

which may take several hours to execute. A frequent solution to

speed-up the analysis is to run several simulations for a set of

input parameter values, and to store the results in data structures

such as lookup tables (LUT). This advantageously replaces

simulation computations with faster array indexing operations.

No existing language was found for the modeling of lookup

tables, which justified the introduction of LUTML (LookUp Table

Modeling Language), as shown in (Figure 3). LUTML allows the

modeling of multi-dimension lookup tables in the form of a tree of

nodes whose depth corresponds to the number of dimensions. The

language embeds predefined enumerations representing

commonly used inter/extrapolation policies.

Figure 3. The meta-model of LUTML.

2.4 MathML (Mathematics)
Mathematics is at the heart of many analyses. The mathematics

domain is quite large, and fortunately, good coverage is provided

by the MathML [12] W3C specification. This justified the

integration of MathML in QAML, despite some difficulty in

converting the content MathML 3.0 XML Schema into an Ecore

meta-model.

MathML was originally defined for visual rendering of

mathematical formulae in web pages (presentation MathML), but

evolved into a more formal language (content MathML) as it was

realized it could be meaningful to many applications without

regard to visual rendering. It is extensible and includes a set of

predefined concepts for most of the mathematics needed up to the

baccalaureate level in Europe. Reusing MathML allowed

benefiting from the tremendous efforts invested by the W3C to

cover the domain, and to reuse legacy MathML-based tools.

2.5 QEML (Quantitative Evaluations)
QEML (Quantitative Evaluation Modeling Language) is the

DSML that composes all smaller DSMLs previously presented. It

formalizes quantitatively evaluable models (hereafter quantity

models). A quantity model has meta-data attributes for storing

information such as the author of the model, its creation date,

measurement campaign, etc. It specifies a relationship between a

set of input model parameters of given quantity kinds and units,

and an output quantity kind. This relationship must be computable

in a way defined by an Evaluation Descriptor. Such descriptor is

either based on a LUTML table, a MathML expression, or a Java

class used to interface with external analysis tools. This later one

allows for integrating legacy analysis tools, or to integrate more

complex analyses that cannot be expressed in terms of

mathematics or lookup tables. An Estimation Descriptor is a

specialized evaluation descriptor that owns another quantity

model representing how the uncertainty of the estimate is

evaluated.

A Quantity Model can be specialized into a Quantity Composition

Model, which has no uncertainty as it only specifies how a

quantity shall be computed from a set of other quantities. The

evaluation descriptor of a composition model is a MathML

expression restricted to expressions containing a set operator such

as sum, mean, product, etc. A composition model always owns an

Element Set Model Parameter representing the set of quantities

involved in the expression of the composition operator.

2.6 AADL (Design)
AADL is the first and only language for which QAML has been

used so far. It is a component based language standardized by the

Society of Automotive Engineers. It is separated into declarative

and instance types of specifications. A Type declaration provides

externally visible features of components such as ports, data and

bus accesses. Associated Implementation(s) declaration(s) define

the internal composition of a component through contained

subcomponents declarations. Component types and

implementations can be extended to support a modeling by

incremental extension approach, where components are

successively refined to provide a hierarchy of decreasing level of

abstraction.

AADL includes a comprehensive property meta-model allowing

users to define properties of their own in order to meet specific

analysis needs. Properties are declared in property sets at the M1

level. The standard includes a set of predefined properties for

major analysis domains such as schedulability, latency, resources

allocation, etc. The AADL property meta-model supports the

representation of units with prefixes, but the coverage of the

domain remains limited compared to that of QUDV. An important

feature of AADL properties that has inspired the semantics of

QAML is their visibility, where a property value declared in a

component type is automatically visible by all its

implementations, extending components, the subcomponents of

its type, etc. This nicely provides several placeholders for

declaring property values at the proper level of abstraction in the

components’ hierarchy.

2.7 QAML (Quantitative Analysis)
One objective of this work is to be able to share libraries of

quantitative models across models of various ADLs. This is why

QEML has been designed so that quantity models can be

represented without knowledge of any ADL. Limited effort is

needed to associate a quantity model with design elements.

Providing this capability is the purpose of QAML, which is just

an extension of the Atlas Model Weaver language (AMW) [13]

(Figure 1). QAML only provides additional semantics taking into

account the meta-models of the models to be woven. AMW was

chosen for the expressivity of its core weaving meta-model as it

nicely captures the concepts of establishing fined-grained

correspondences between model elements, without the need to

modify the meta-models of the woven models. This is essential

because the languages of the linked design models are often

standardized that cannot be changed.

However, the core AMW language needed to be updated to

increase its flexibility in establishing correspondence between

model elements. This modified language (called AMW*) was

added the capability to link model elements using formal language

queries besides direct referencing of model elements. Query

expressions make use of the Constraint Language Modeling

Language (CLML) of our MPM environment (Figure 1), which

declares constraints languages in an opaque manner, and provides

interpreter service classes to evaluate constraint languages

expressions. In the latest version of our toolset, the OCL and Lute

[14] languages are available.

2.8 SEMANTICS
The semantics of QAML is composed from the semantics of its

individual sub-DSMLs. The semantics of the sub-languages is

obvious. For QUDV, it consists in unit conversion and the

verification of units and dimensions consistency. When the design

language also declares units like AADL, values extracted from the

design model are automatically converted for units expected by

the QEML model. The semantics of MathML and LUTML

consists in the evaluation of a quantity value from a set of input

variable values. The semantics of the weaving model composing

QEML and design models is to provide information from the

design needed to compute the QEML models. The information is

extracted from the following weaving links:

1. A top parent link between the QEML model and a

design element that defines the context of the

association.

2. A link between the result quantity kind of the QEML

model and a property of the associated context element

where the analysis result will be stored.

3. A child link for every parameter of the quantity model.

The link refers to two elements from the design: a model

element and a property applicable to this element. This

is used to retrieve, from the design model element,

values substituted to the parameters of the QEML model

for evaluation. The link to the design element may be a

direct reference or a query of a language. This capability

is needed because data required for computing a

quantity model may be potentially stored in any

component of the design. For example, the power

consumption induced by a thread on its executing

processor typically depends on properties of the

processor such as its frequency. A query is then needed

to retrieve the processor as identified by the AADL

processor binding property.

4. For quantity composition models, an extra link is

declared to retrieve the set of design model elements

holding the property values to be composed.

The impact of QAML model interpretation on the system

architecture model is well controlled, as linking query expressions

are non-modifying. The only element modified after model

interpretation is the system architecture context element, which

also serves as a context for evaluating the queries.

The semantics of QAML also includes a concept of quantity

model visibility, inspired from the AADL property visibility

mechanism. A model associated with an AADL component will

be visible by all its descending components. As a result, a quantity

model associated at a given component of the hierarchy may only

become evaluable when components lower in the hierarchy are

sufficiently refined to provide all inputs needed by the model. An

inherited model can also be overridden by a more accurate model

estimating the same quantity kind, but requiring more detailed

information from the design component to become computable.

2.8.1 Model Interpreter
The evaluation of a woven quantity model (QAML model) is

achieved through model interpretation rather than code

generation. This has the advantage of avoiding the need to re-

compile the tool every time a new quantity model is associated

with the design. Model interpreters have been coded in Java for

MathML (reusing an existing math expression evaluation

framework), LUTML, QEML and QAML. The QAML interpreter

composes all other interpreters. It uses a model interface service

class, customized for the ADL of the associated design element,

and the weaving model information to extract the model

parameter values from the design. These values are then passed to

the QEML interpreter, which delegates the computation of the

result to either the MathML interpreter, the LUTML interpreter or

to an external analysis tool depending on the type of the quantity

model evaluation descriptor. The QAML interpreter also uses a

dependency manager to ensure that models are evaluated in a

correct order. For a given design element and attached QEML

model, the dependency manager builds a graph of pairs of design

element / QEML model that first need to be evaluated, taking into

account the fact that a property evaluated from a given quantity

model may be the input of other quantity models. Evaluation is

triggered as changes are detected in any of the design or QAML

models, to ensure that evaluated properties are maintained

consistent with the design.

3. USE CASE
To demonstrate the assets of QAML, a simple use case showing

static power analysis of a video processing embedded system is

presented.

3.1 Toolset
Dedicated form editors have been developed to ease the definition

of units, quantity kinds, quantity models and weaving models

defining the association with AADL model elements. These

editors greatly help in flattening the learning curve of the

language. The toolset embeds OSATE, which is used as a front-

end for editing AADL models. The QAML tool can be easily

adapted for other ADLs by implementing a single model interface

class responsible for interacting with design models, and for

providing components hierarchy trees for quantity model visibility

management.

3.2 Quantitative Analyses
Pre-declared AADL property sets and classifiers have been added

to the AADL environment of the QAML toolset to provide

generic component declarations where generic QEML models can

be associated. More precisely, Abstract Generic_Hw component

type and implementation have been declared to be extended by all

hardware components of systems modeled in the environment.

Generic Static Power Models:

Two quantity models in the form of Equation 1 and Equation 2

are defined and associated with the Generic_Hw component

implementation. PstatTot, Pstat and PstatSubcompo are specialized

quantity kinds whose general quantity kind is the generic static

power quantity kind, which itself is a specialization of an even

more general power quantity kind. The three static power quantity

kinds represent the various parts of static power of a component.

Pstat is the component intrinsic part. The subcomponents power

can be summed since static power is by definition constant over

time.

ntssubcompone

statTotpostatSubcom PP

Equation 1.

statpostatSubcomstatTot PPP

Equation 2.

These two models are formally represented with MathML. For

Equation 1, an OCL query is added to the weaving model to

retrieve all subcomponents of the associated design component.

Video Processing System:

A real image processing system that processes a 25 frames/s VGA

video image stream has been modeled in AADL. The software

application is executed by dedicated processors synthesized in a

Xilinx Virtex5 FPGA (Field Programmable Gate Array). Image

capture and display are performed by hardware blocks

respectively interfaced with a camcorder and an LCD screen. The

static power consumption of the FPGA has been characterized

from measurements performed for various FPGA configurations

to study the variation of the consumed power as a function of

parameters such as the percentage of slices (basic configurable

logical elements) used by the design, the average toggle rate,

which is the rate at which the output signal of a basic logical

element commutes when its input commutes, and the clock

frequency. Measurement data in the form of a CSV (comma

separated value) file obtained from the Open-PEOPLE hardware

platform have been imported to constitute a lookup table-based

QEML model.

The FPGA is modeled in AADL according to a modeling by

incremental extension approach as presented in [15], where FPGA

components are successively refined to capture information at the

proper levels of abstraction. The LUTML-based model for the

total static power is associated with an AADL component type

declaration representing the Xilinx XCV2P30 FPGA configurable

component on which the measurements were taken (Figure 4). No

specific configuration is defined at this level of abstraction yet.

The advantage of associating the model at this level of abstraction

is that all refined component implementations specifying a precise

configuration of the FPGA will inherit the LUTML quantity

model. It is also only at this lower level of abstraction that the

QEML model becomes computable, since property values needed

to compute the quantity model and depending on the actual

configuration can be set.

While these quantitative models remain extremely simple, more

complex quantitative models have been represented with QAML

such as the consumption due to IPC communications services as

described in [16]. A model that needed several days of eclipse

plugin development to be integrated in the CAT tool could be

integrated in the AADL MBE platform within a few hours by a

user having knowledge of both the QAML editors and the OCL

(or Lute) query language.

Figure 4. A lookup table quantity model associated with the XCV2P30 AADL FPGA configurable space component (selected in the

AADL editor). The association is shown with the QAML weaving editor (quantitative analysis view). The grayed subcomponents

power model is inherited from the generic AADL hardware component where it has been associated.

4. RELATED WORK
An interesting work related to the modeling of non-functional

properties in domain specific modeling languages is found in

[17]. A language has been proposed for the description of non-

functional attributes in component models with properties such as

type (e.g. power consumption, execution time, etc.), data

including primitive and complex types such as records or tuples,

meta-data to store information such as how the attribute value was

obtained and its degree of confidence, validity condition, and

composition in terms of other attribute values. Besides the

complex data types for attributes, all these concepts are also

present in our language. Attribute types, which can only be

quantitative types in QAML, are represented by QUDV quantity

kinds. The degree of confidence is represented by the uncertainty

models; attributables is modeled through the applicability clause

of the AADL properties associated with the quantity kinds. The

validity condition in our language is embedded in the evaluation

descriptor, but validity also depends on the actual design element

with which the model is associated, as it must exhibit the features

needed to compute the quantity model.

An advantage with our approach is that it uses the attributes of the

ADL. Moreover, our language is interpretable while the attribute

framework relies on external tools to provide analysis results. An

advantage of their language however is that it is not restricted to

quantitative attributes.

Another language close to QAML is ACOL [18], which is a

model annotation language incorporating analysis, constraints and

optimization expressions. The core language includes a set of

principles that must be adapted to the system architecture

language that it will be used with. ACOL analysis expressions

allow defining derived properties in terms of other properties

obtained from an ACOL interface plugged to the architecture

model (using the annex clause for AADL). In QAML a QEML

model is the equivalent of ACOL analysis clauses; the interface

being replaced by the model parameter declarations. A difference

is that QEML uses a standard to represent mathematical analyses

(MathML), and can also evaluate results from data structures such

as LUTML lookup tables besides expressions. ACOL constraint

expressions guard the allowed values of properties to warn the

designer when the model does not verify the guard. The

equivalent of ACOL constraint in our framework is formal non-

functional requirements of the RDAL language [19] (Figure 1),

the advantage being that RDAL brings the assets of the

requirements engineering discipline in the design flow.

An advantage of QAML over ACOL is the possibility to share

QEML models across several ADLs. ACOL models embed native

concepts of the system architecture language, which is good

because users are already familiar with this language, but with the

penalty that models are no longer shareable. We favored the

definition of user-friendly editors making the language easy to

learn while maintaining the shareable asset of quantity models. An

asset of ACOL however is its optimization expression mechanism

formulating minimization or maximization of one or several non-

functional properties. QAML does not have an equivalent for this,

but the intent is to implement this function with design space

exploration tools using formally expressed RDAL Goals to trace

performances of system architectures.

Finally, the MARTE Value Specification Language (VSL) is also

a similar framework. However, while MARTE attribute values can

also be expressed formally in terms of symbolic variables and

expressions, it remains a UML profile and does not fit in our

MPM approach. Furthermore, no means is provided to represent

quantitative models based on data structures such as lookup tables

(or to interface with external tools), and the concept of uncertainty

does not seem to be explicit in the language.

5. CONCLUSION AND PERSPECTIVES
Quantitative analyses of all kinds are needed throughout the MBE

design flow to help discover defects early in the development

cycle. These analyses are essential whatever the ADL used to

model the system may be. This paper presented the QAML

language for the modeling of quantitative analysis used in the

design of embedded systems with AADL. The strength of QAML

is its ability to represent analyses formally so that they can be

interpreted to provide analysis results stored in design models.

Our trials showed that complex quantity models can be integrated

in MBE designs with limited effort compared to the development

of dedicated analysis tools. Reusing existing standards such as

QUDV and MathML allowed covering the domains adequately, at

the right level of abstraction, and to reuse tools already developed

for these languages.

QAML is well suited for the representation of complex

quantitative models and would nicely replace Excel data tables

typically used within hardware component data sheets. Having

formal data sheets would greatly help in reducing errors during

MBE design.

Using QAML with other ADLs is also an interesting perspective,

although the language has been designed so that little work is

needed for this. It only requires the development of another

extension of AMW for the ADL, and the implementation of a Java

class used by the tool to interact with design models in an

agnostic manner. All other elements of the tool (editors and model

interpreters) can be reuse as is. This is possible thanks to MPM

that drove the design of QAML.

Finally, generalizing QAML to support non numerical properties

is also an interesting perspective. In the actual version of the

language, quantity model parameters can only be of numerical

type, and parameters expressed as non numerical data types such

as enumerations must be mapped to numerical values.

6. REFERENCES
[1] D. Blouin and E. Senn. CAT: An extensible system-level

power consumption analysis toolbox for model-driven

design. In NEWCAS Conference (NEWCAS), 2010 8th

IEEE International, pages 33 –36, 2010.

[2] J. Laurent, N. Julien, E. Senn, and E. Martin, Functional

Level Power Analysis: An efficient approach for modeling

the power consumption of complex processors, in

Proceedings of the DATE Conference, Munich, 2004.

[3] Architecture analysis & design language (AADL), version 2,

January 2010, http://standards.sae.org/as5506a/.

[4] A UML Profile for MARTE: Modeling and Analysis of Real-

Time Embedded systems V1.1, OMG Adopted Specification,

OMG Document Number: formal/2011-06-02,

http://www.omg.org/spec/MARTE/1.1/PDF/.

[5] AUTomotive Open System ARchitecture,

http://www.autosar.org.

[6] SYStems Modeling Language, OMG,” 2008,

http://www.omgsysml.org/.

[7] Vangheluwe H, de Lara J, Mosterman P (2002) An

Introduction to Multi-Paradigm Modeling and Simulation.

In: Proceedings of AI, Simulation and Planning – AIS’2002.

Lisbon. SCS International, pp: 9–20.

[8] The Eclipse Modeling Framework (EMF),

http://www.eclipse.org/modeling/emf/.

[9] Open Source AADL Tool Environment (OSATE),

http://www.aadl.info/aadl/currentsite/tool/osate-down.html.

[10] The Open-PEOPLE Project Website, 2009,

http://www.open-people.fr/.

[11] Quantity, Units, Dimensions, Values (QUDV),

http://www.omgwiki.org/OMGSysML/.

[12] Mathematics Markup Language (MathML),

http://www.w3.org/Math/.

[13] M. D. Del Fabro, J. Bézivin, F. Jouault, E. Breton, G.

Gueltas. AMW: a Generic Model Weaver. In Procs. of

IDM05. 2005.

[14] Lute Constraints Checker,

https://wiki.sei.cmu.edu/aadl/index.php/RC_META

[15] D. Blouin, D. Chillet, E. Senn, S. Bilavarn, R. Bonamy, and

C. Samoyeau, AADL Extension to Model Classical FPGA

and FPGA Embedded within a SoC, International Journal of

Reconfigurable Computing, 2011.

[16] Saadia Dhouib, Jean-Philippe Diguet, Eric Senn, Johann

Laurent. Energy models of real time operating systems on

FPGA. Euromicro 4th Int. Work. on Operating Systems

Platforms for Embedded Real-Time Applications (OSPERT)

2008.

[17] Séverine Sentilles, Petr Štěpán, Jan Carlson and Ivica

Crnković. Integration of Extra-Functional Properties in

Component Models. In Proceedings of the 12th International

Symposium on Component-Based Software Engineering

(CBSE '09), 2009.

[18] Dries Langsweirdt, Nelis Bouck and Yolande Berbers.

Architecture-Driven Development of Embedded Systems

with ACOL. In Proceedings of the 13th IEEE International

Symposium on Object/Component/Service-Oriented Real-

Time Distributed Computing Workshops, 2010.

[19] Blouin, D. Senn, E. Turki, S. Defining an annex language to

the architecture analysis and design language for

requirements engineering activities support, Model-Driven

Requirements Engineering Workshop (MoDRE).

http://standards.sae.org/as5506a/
http://www.autosar.org/
http://www.omgsysml.org/
http://www.eclipse.org/modeling/emf/
http://www.aadl.info/aadl/currentsite/tool/osate-down.html
http://www.open-people.fr/
http://www.omgwiki.org/OMGSysML/
http://www.w3.org/Math/
https://wiki.sei.cmu.edu/aadl/index.php/RC_META

