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ABSTRACT 

In this paper, the QAML (Quantitative Analysis Modeling 

Language) DSML is presented. It is a formalism for representing 

quantitative analysis models applied to embedded system 

architecture models. Issued from the need to standardize the 

representation of heterogeneous power consumption analysis 

models, QAML has been generalized to support the analysis of 

arbitrary physical quantities. Following a Multi-Paradigm 

Modeling (MPM) approach and the principle of separation of 

concerns, QAML combines a set of DSMLs such as the SysML 

QUDV annex, the W3C MathML and other custom DSMLs to 

favor interoperability and reuse. Using an enhanced Atlas Model 

Weaving language, embedded systems architecture models of 

arbitrary languages such as AADL can be annotated with 

quantitative estimation models issued from measurements 

campaigns, numerical simulations or other means. The complete 

set of models in the MPM environment is interpretable to provide 

analysis results in system architecture models. 

Categories and Subject Descriptors 
D2.2 [Design Tools and Techniques] 

General Terms 
Design, Languages 

Keywords 

Model Analysis, DSL, DSML, ADL, AADL, SysML, MPM, 

MathML. 

1. INTRODUCTION 
The purpose of Model Based Engineering (MBE) is to discover 

and solve system level problems early in the development cycle 

through analysis of various qualities of models. Many of these 

qualities such as resources consumption, timing, latency, etc. are 

often expressed in a quantitative manner with a system of units. 

Model analyses are typically performed with dedicated tools that 

extract specific properties from an input design model, perform 

the analysis, and optionally re-inject the analysis results into the 

input model. 

An example of this is the Consumption Analysis Toolbox CAT 

[1], which integrates power consumption estimation models into 

AADL-based designs. These estimation models are often 

constructed using the FLPA (Functional Level Power Analysis) 

[2] method, where measurements are performed to characterize 

stimulated hardware components. FLPA models are typically 

represented as a set of mathematical laws, or multi dimensional 

data tables from which the estimates are interpolated. The main 

advantage of FLPA models is that they are accurate and fast to 

compute (many times faster that cycle-level accurate simulations). 

They are therefore much better suited for design space 

exploration. However, they suffer from a reduced applicability, 

since a model is only suitable for the specific type of the 

component (manufacturer / model) on which the measurements 

were taken. As a result, FLPA models, if adopted by the industry 

will be extremely numerous, and in an ideal scenario, they could 

even be part of components datasheets. 

A problem with most analysis tools such as CAT is that the 

underlying analysis models are rarely represented with an 

adequate formalism. For instance, in CAT, the models are 

represented as Java or C++ code embedded in Eclipse plugins, 

and a qualified programmer is needed every time a new model 

must be integrated into the tool. 

On the other hand, there is panoply of Architecture Description 

Languages (ADLs) available for modeling embedded systems. 

Well known languages are the Architecture Analysis and Design 

Language (AADL) [3], the Modeling and Analysis of Real-Time 

and Embedded Systems (MARTE) UML profile [4], the 

AUTomotive Open System Architecture (AUTOSAR) [5], and the 

Systems Modeling Language (SysML) [6]. Quantitative analyses 

are needed for all these languages, but the problem is that tools 

are often interfaced with a single language, and model 

transformations must be developed for interoperability. This 

introduces additional complexity in the analysis process, such as 

model synchronization that must be performed when several 

design models of the same system (but different languages) need 

to coexist.  

The contribution of this work is to solve these problems by 

providing a new DSML and toolset as means to quickly integrate 

new analysis into MBE design tool chains, without the need for an 

expert programmer. This DSML, called QAML for Quantitative 

Analysis Modeling Language, has been designed so that 

quantitative models are self contained and remain independent 

from any ADL. Once a model has been stored in a library, it can 

be shared across design models of various ADLs, since only a thin 

weaving model needs to be created to associate a quantitative 

model with a design model. User-friendly editors have been 

developed for this purpose, and ideally, designers should be able 

create by themselves the needed quantitative models and associate 

them with their designs. Once associated, a quantitative analysis 

model is automatically interpreted to update the design with the 

analysis results. Analysis models are automatically re-evaluated as 

properties of the design model on which they depend are changed, 

thus maintaining the analysis results consistent with the design. 

QAML has been designed according to Multi-Paradigm Modeling 

(MPM) [7], following a separation of concerns principle to favor 

the reuse of existing languages such as QUDV (Quantity Units 

Dimensions Values) [11], MathML [12], and AMW (Atlas Model 

Weaver) [13]. Reusing these languages allowed saving 



tremendous modeling efforts. QAML has been implemented as set 

of Eclipse plugins with the EMF framework [8], and tested with 

the Open Source AADL Tool Environment (OSATE) [9] in the 

frame of the Open-PEOPLE project [10]. 

This paper is structured as follows: section 2 introduces the 

language by presenting its composing DSMLs. Section 3 presents 

a simple use-case showing static power analysis of a video 

processing embedded system. In section 4, related work is 

compared and finally, the paper is concluded with a discussion on 

the assets and weaknesses of the language, and the research 

directions to resolve them. 

2. LANGUAGE OVERVIEW 
The architecture of QAML follows a separation of concerns 

principle in an MPM approach. MPM advocates that every aspect 

of a problem should be formalized with an appropriate DSML to 

avoid implicit information potentially leading to misinterpretation 

and errors. DSMLs of independent domains should remain 

independent of each other and controlled in size by including only 

the artifacts needed for representing the domain at the right level 

of abstraction for the problems to be solved. 

Figure 1 depicts the overall architecture of the QAML language, 

where each ellipse represents a language covering a sub-domain 

of the more global quantitative analysis domain. Arrows between 

the languages indicate composition dependencies of various 

natures. A <<use>> dependency means that the language from 

which the arrow origins directly refers to concepts of the other 

language via its class’s properties. The <<extends>> dependency 

is stronger as some classes of one language extend classes of the 

other language. Finally, the <<agnostic use>> dependency is the 

weakest of all. It only holds at the M1 level where models of a 

given language refer to instances of models of other languages 

through un-typed references; both languages do not have any 

explicit dependency in their meta-models. The next sections 

briefly introduce all sub-languages that compose QAML. 

2.1 QUDV (Quantities and Units) 
For quantitative analyses, a solid foundation of well-defined 

quantities, units and dimensions is crucial. Indeed, severe errors 

have occurred in systems just because dimensions and units had 

not been formalized, and mismatched those of other integrated 

systems. In a search for an existing language covering the domain 

of quantities and units, QUDV [11] was quickly identified as the 

best choice, due to its excellent coverage of the domain and 

precise semantics for unit conversions and verification of 

consistency. 

QUDV stands for Quantity Units Dimension Values and is an 

annex of SysML. For this project the QUDV UML profile has 

been implemented as a DSML. It has the ability to represent 

systems of quantities and units such as the International System of 

Units (SI) or any other arbitrary units system. The main concepts 

are Quantity, Quantity Kind and Unit. A quantity of a given 

quantity kind contains a numerical value expressed in a particular 

measurement unit. Simple Quantity Kinds provide the basis for 

defining other quantity kinds via specialization or derivation. 

Each quantity kind may have an expression of its dependence in 

terms of base quantity kind(s) of a System of Quantities, so that 

dimension analysis can be performed and errors detected 

automatically. Specialized quantity kinds are variants of more 

general quantity kinds (thus inheriting the same units). 

 

Figure 1. An overview of the architecture of QAML. 

2.2 EQML (Estimates) 
Another essential aspect of any quantitative analysis is estimates 

and their uncertainty, indicating how the analysis results can be 

trusted. In science, an estimate without uncertainty is useless, and 

formalizing uncertainty with a dedicated language is essential. No 

DSML was found covering this domain, which justified the 

development of the EQML language (Estimated Quantity 

Modeling Language). Figure 2 shows the meta-model of EQML, 

where QUDV is used to represent quantities and units. EQML 

supports the representation of estimates of various kinds from 

simple intervals (value ± uncertainty) to complex probability 

distributions functions of random variables. Functions are 

represented using concepts from other languages; namely LUTML 

and MathML that are introduced in the following sections. 

 

Figure 2. The meta-model of EQML. 

2.3 LUTML (Lookup Tables) 
Analyses of all kinds are often performed with simulation tools, 

which may take several hours to execute. A frequent solution to 

speed-up the analysis is to run several simulations for a set of 

input parameter values, and to store the results in data structures 

such as lookup tables (LUT). This advantageously replaces 

simulation computations with faster array indexing operations. 

No existing language was found for the modeling of lookup 

tables, which justified the introduction of LUTML (LookUp Table 

Modeling Language), as shown in (Figure 3). LUTML allows the 

modeling of multi-dimension lookup tables in the form of a tree of 

nodes whose depth corresponds to the number of dimensions. The 

language embeds predefined enumerations representing 

commonly used inter/extrapolation policies. 



 

Figure 3. The meta-model of LUTML. 

2.4 MathML (Mathematics) 
Mathematics is at the heart of many analyses. The mathematics 

domain is quite large, and fortunately, good coverage is provided 

by the MathML [12] W3C specification. This justified the 

integration of MathML in QAML, despite some difficulty in 

converting the content MathML 3.0 XML Schema into an Ecore 

meta-model. 

MathML was originally defined for visual rendering of 

mathematical formulae in web pages (presentation MathML), but 

evolved into a more formal language (content MathML) as it was 

realized it could be meaningful to many applications without 

regard to visual rendering. It is extensible and includes a set of 

predefined concepts for most of the mathematics needed up to the 

baccalaureate level in Europe. Reusing MathML allowed 

benefiting from the tremendous efforts invested by the W3C to 

cover the domain, and to reuse legacy MathML-based tools. 

2.5 QEML (Quantitative Evaluations) 
QEML (Quantitative Evaluation Modeling Language) is the 

DSML that composes all smaller DSMLs previously presented. It 

formalizes quantitatively evaluable models (hereafter quantity 

models). A quantity model has meta-data attributes for storing 

information such as the author of the model, its creation date, 

measurement campaign, etc. It specifies a relationship between a 

set of input model parameters of given quantity kinds and units, 

and an output quantity kind. This relationship must be computable 

in a way defined by an Evaluation Descriptor. Such descriptor is 

either based on a LUTML table, a MathML expression, or a Java 

class used to interface with external analysis tools. This later one 

allows for integrating legacy analysis tools, or to integrate more 

complex analyses that cannot be expressed in terms of 

mathematics or lookup tables. An Estimation Descriptor is a 

specialized evaluation descriptor that owns another quantity 

model representing how the uncertainty of the estimate is 

evaluated. 

A Quantity Model can be specialized into a Quantity Composition 

Model, which has no uncertainty as it only specifies how a 

quantity shall be computed from a set of other quantities. The 

evaluation descriptor of a composition model is a MathML 

expression restricted to expressions containing a set operator such 

as sum, mean, product, etc. A composition model always owns an 

Element Set Model Parameter representing the set of quantities 

involved in the expression of the composition operator.  

2.6 AADL (Design) 
AADL is the first and only language for which QAML has been 

used so far. It is a component based language standardized by the 

Society of Automotive Engineers. It is separated into declarative 

and instance types of specifications. A Type declaration provides 

externally visible features of components such as ports, data and 

bus accesses. Associated Implementation(s) declaration(s) define 

the internal composition of a component through contained 

subcomponents declarations. Component types and 

implementations can be extended to support a modeling by 

incremental extension approach, where components are 

successively refined to provide a hierarchy of decreasing level of 

abstraction. 

AADL includes a comprehensive property meta-model allowing 

users to define properties of their own in order to meet specific 

analysis needs. Properties are declared in property sets at the M1 

level. The standard includes a set of predefined properties for 

major analysis domains such as schedulability, latency, resources 

allocation, etc. The AADL property meta-model supports the 

representation of units with prefixes, but the coverage of the 

domain remains limited compared to that of QUDV. An important 

feature of AADL properties that has inspired the semantics of 

QAML is their visibility, where a property value declared in a 

component type is automatically visible by all its 

implementations, extending components, the subcomponents of 

its type, etc. This nicely provides several placeholders for 

declaring property values at the proper level of abstraction in the 

components’ hierarchy. 

2.7 QAML (Quantitative Analysis) 
One objective of this work is to be able to share libraries of 

quantitative models across models of various ADLs. This is why 

QEML has been designed so that quantity models can be 

represented without knowledge of any ADL. Limited effort is 

needed to associate a quantity model with design elements. 

Providing this capability is the purpose of QAML, which is just 

an extension of the Atlas Model Weaver language (AMW) [13] 

(Figure 1). QAML only provides additional semantics taking into 

account the meta-models of the models to be woven. AMW was 

chosen for the expressivity of its core weaving meta-model as it 

nicely captures the concepts of establishing fined-grained 

correspondences between model elements, without the need to 

modify the meta-models of the woven models. This is essential 

because the languages of the linked design models are often 

standardized that cannot be changed. 

However, the core AMW language needed to be updated to 

increase its flexibility in establishing correspondence between 

model elements. This modified language (called AMW*) was 

added the capability to link model elements using formal language 

queries besides direct referencing of model elements. Query 

expressions make use of the Constraint Language Modeling 

Language (CLML) of our MPM environment (Figure 1), which 

declares constraints languages in an opaque manner, and provides 

interpreter service classes to evaluate constraint languages 

expressions. In the latest version of our toolset, the OCL and Lute 

[14] languages are available. 

2.8 SEMANTICS 
The semantics of QAML is composed from the semantics of its 

individual sub-DSMLs. The semantics of the sub-languages is 

obvious. For QUDV, it consists in unit conversion and the 

verification of units and dimensions consistency. When the design 

language also declares units like AADL, values extracted from the 

design model are automatically converted for units expected by 



the QEML model. The semantics of MathML and LUTML 

consists in the evaluation of a quantity value from a set of input 

variable values. The semantics of the weaving model composing 

QEML and design models is to provide information from the 

design needed to compute the QEML models. The information is 

extracted from the following weaving links:  

1. A top parent link between the QEML model and a 

design element that defines the context of the 

association.  

2. A link between the result quantity kind of the QEML 

model and a property of the associated context element 

where the analysis result will be stored. 

3. A child link for every parameter of the quantity model. 

The link refers to two elements from the design: a model 

element and a property applicable to this element. This 

is used to retrieve, from the design model element, 

values substituted to the parameters of the QEML model 

for evaluation. The link to the design element may be a 

direct reference or a query of a language. This capability 

is needed because data required for computing a 

quantity model may be potentially stored in any 

component of the design. For example, the power 

consumption induced by a thread on its executing 

processor typically depends on properties of the 

processor such as its frequency. A query is then needed 

to retrieve the processor as identified by the AADL 

processor binding property. 

4. For quantity composition models, an extra link is 

declared to retrieve the set of design model elements 

holding the property values to be composed. 

The impact of QAML model interpretation on the system 

architecture model is well controlled, as linking query expressions 

are non-modifying. The only element modified after model 

interpretation is the system architecture context element, which 

also serves as a context for evaluating the queries. 

The semantics of QAML also includes a concept of quantity 

model visibility, inspired from the AADL property visibility 

mechanism. A model associated with an AADL component will 

be visible by all its descending components. As a result, a quantity 

model associated at a given component of the hierarchy may only 

become evaluable when components lower in the hierarchy are 

sufficiently refined to provide all inputs needed by the model. An 

inherited model can also be overridden by a more accurate model 

estimating the same quantity kind, but requiring more detailed 

information from the design component to become computable.  

2.8.1 Model Interpreter 
The evaluation of a woven quantity model (QAML model) is 

achieved through model interpretation rather than code 

generation. This has the advantage of avoiding the need to re-

compile the tool every time a new quantity model is associated 

with the design. Model interpreters have been coded in Java for 

MathML (reusing an existing math expression evaluation 

framework), LUTML, QEML and QAML. The QAML interpreter 

composes all other interpreters. It uses a model interface service 

class, customized for the ADL of the associated design element, 

and the weaving model information to extract the model 

parameter values from the design. These values are then passed to 

the QEML interpreter, which delegates the computation of the 

result to either the MathML interpreter, the LUTML interpreter or 

to an external analysis tool depending on the type of the quantity 

model evaluation descriptor. The QAML interpreter also uses a 

dependency manager to ensure that models are evaluated in a 

correct order. For a given design element and attached QEML 

model, the dependency manager builds a graph of pairs of design 

element / QEML model that first need to be evaluated, taking into 

account the fact that a property evaluated from a given quantity 

model may be the input of other quantity models. Evaluation is 

triggered as changes are detected in any of the design or QAML 

models, to ensure that evaluated properties are maintained 

consistent with the design.  

3. USE CASE 
To demonstrate the assets of QAML, a simple use case showing 

static power analysis of a video processing embedded system is 

presented. 

3.1 Toolset 
Dedicated form editors have been developed to ease the definition 

of units, quantity kinds, quantity models and weaving models 

defining the association with AADL model elements. These 

editors greatly help in flattening the learning curve of the 

language. The toolset embeds OSATE, which is used as a front-

end for editing AADL models. The QAML tool can be easily 

adapted for other ADLs by implementing a single model interface 

class responsible for interacting with design models, and for 

providing components hierarchy trees for quantity model visibility 

management. 

3.2 Quantitative Analyses 
Pre-declared AADL property sets and classifiers have been added 

to the AADL environment of the QAML toolset to provide 

generic component declarations where generic QEML models can 

be associated. More precisely, Abstract Generic_Hw component 

type and implementation have been declared to be extended by all 

hardware components of systems modeled in the environment. 

Generic Static Power Models: 

Two quantity models in the form of Equation 1 and Equation 2 

are defined and associated with the Generic_Hw component 

implementation. PstatTot, Pstat and PstatSubcompo are specialized 

quantity kinds whose general quantity kind is the generic static 

power quantity kind, which itself is a specialization of an even 

more general power quantity kind. The three static power quantity 

kinds represent the various parts of static power of a component. 

Pstat is the component intrinsic part. The subcomponents power 

can be summed since static power is by definition constant over 

time.  

ntssubcompone

statTotpostatSubcom PP  

Equation 1. 

statpostatSubcomstatTot PPP  

Equation 2. 

These two models are formally represented with MathML. For 

Equation 1, an OCL query is added to the weaving model to 

retrieve all subcomponents of the associated design component. 

Video Processing System: 

A real image processing system that processes a 25 frames/s VGA 

video image stream has been modeled in AADL. The software 

application is executed by dedicated processors synthesized in a 

Xilinx Virtex5 FPGA (Field Programmable Gate Array). Image 



capture and display are performed by hardware blocks 

respectively interfaced with a camcorder and an LCD screen. The 

static power consumption of the FPGA has been characterized 

from measurements performed for various FPGA configurations 

to study the variation of the consumed power as a function of 

parameters such as the percentage of slices (basic configurable 

logical elements) used by the design, the average toggle rate, 

which is the rate at which the output signal of a basic logical 

element commutes when its input commutes, and the clock 

frequency. Measurement data in the form of a CSV (comma 

separated value) file obtained from the Open-PEOPLE hardware 

platform have been imported to constitute a lookup table-based 

QEML model. 

The FPGA is modeled in AADL according to a modeling by 

incremental extension approach as presented in [15], where FPGA 

components are successively refined to capture information at the 

proper levels of abstraction. The LUTML-based model for the 

total static power is associated with an AADL component type 

declaration representing the Xilinx XCV2P30 FPGA configurable 

component on which the measurements were taken (Figure 4). No 

specific configuration is defined at this level of abstraction yet. 

The advantage of associating the model at this level of abstraction 

is that all refined component implementations specifying a precise 

configuration of the FPGA will inherit the LUTML quantity 

model. It is also only at this lower level of abstraction that the 

QEML model becomes computable, since property values needed 

to compute the quantity model and depending on the actual 

configuration can be set. 

While these quantitative models remain extremely simple, more 

complex quantitative models have been represented with QAML 

such as the consumption due to IPC communications services as 

described in [16]. A model that needed several days of eclipse 

plugin development to be integrated in the CAT tool could be 

integrated in the AADL MBE platform within a few hours by a 

user having knowledge of both the QAML editors and the OCL 

(or Lute) query language. 

 

Figure 4. A lookup table quantity model associated with the XCV2P30 AADL FPGA configurable space component (selected in the 

AADL editor). The association is shown with the QAML weaving editor (quantitative analysis view). The grayed subcomponents 

power model is inherited from the generic AADL hardware component where it has been associated. 

4. RELATED WORK 
An interesting work related to the modeling of non-functional 

properties in domain specific modeling languages is found in 

[17]. A language has been proposed for the description of non-

functional attributes in component models with properties such as 

type (e.g. power consumption, execution time, etc.), data 

including primitive and complex types such as records or tuples, 

meta-data to store information such as how the attribute value was 

obtained and its degree of confidence, validity condition, and 

composition in terms of other attribute values. Besides the 

complex data types for attributes, all these concepts are also 

present in our language. Attribute types, which can only be 

quantitative types in QAML, are represented by QUDV quantity 

kinds. The degree of confidence is represented by the uncertainty 

models; attributables is modeled through the applicability clause 

of the AADL properties associated with the quantity kinds. The 

validity condition in our language is embedded in the evaluation 

descriptor, but validity also depends on the actual design element 

with which the model is associated, as it must exhibit the features 

needed to compute the quantity model.  

An advantage with our approach is that it uses the attributes of the 

ADL. Moreover, our language is interpretable while the attribute 

framework relies on external tools to provide analysis results. An 

advantage of their language however is that it is not restricted to 

quantitative attributes. 

Another language close to QAML is ACOL [18], which is a 

model annotation language incorporating analysis, constraints and 

optimization expressions. The core language includes a set of 

principles that must be adapted to the system architecture 

language that it will be used with. ACOL analysis expressions 

allow defining derived properties in terms of other properties 

obtained from an ACOL interface plugged to the architecture 

model (using the annex clause for AADL). In QAML a QEML 

model is the equivalent of ACOL analysis clauses; the interface 

being replaced by the model parameter declarations. A difference 

is that QEML uses a standard to represent mathematical analyses 

(MathML), and can also evaluate results from data structures such 

as LUTML lookup tables besides expressions. ACOL constraint 

expressions guard the allowed values of properties to warn the 

designer when the model does not verify the guard. The 

equivalent of ACOL constraint in our framework is formal non-

functional requirements of the RDAL language [19] (Figure 1), 

the advantage being that RDAL brings the assets of the 

requirements engineering discipline in the design flow.  



An advantage of QAML over ACOL is the possibility to share 

QEML models across several ADLs. ACOL models embed native 

concepts of the system architecture language, which is good 

because users are already familiar with this language, but with the 

penalty that models are no longer shareable. We favored the 

definition of user-friendly editors making the language easy to 

learn while maintaining the shareable asset of quantity models. An 

asset of ACOL however is its optimization expression mechanism 

formulating minimization or maximization of one or several non-

functional properties. QAML does not have an equivalent for this, 

but the intent is to implement this function with design space 

exploration tools using formally expressed RDAL Goals to trace 

performances of system architectures. 

Finally, the MARTE Value Specification Language (VSL) is also 

a similar framework. However, while MARTE attribute values can 

also be expressed formally in terms of symbolic variables and 

expressions, it remains a UML profile and does not fit in our 

MPM approach. Furthermore, no means is provided to represent 

quantitative models based on data structures such as lookup tables 

(or to interface with external tools), and the concept of uncertainty 

does not seem to be explicit in the language. 

5. CONCLUSION AND PERSPECTIVES 
Quantitative analyses of all kinds are needed throughout the MBE 

design flow to help discover defects early in the development 

cycle. These analyses are essential whatever the ADL used to 

model the system may be. This paper presented the QAML 

language for the modeling of quantitative analysis used in the 

design of embedded systems with AADL. The strength of QAML 

is its ability to represent analyses formally so that they can be 

interpreted to provide analysis results stored in design models. 

Our trials showed that complex quantity models can be integrated 

in MBE designs with limited effort compared to the development 

of dedicated analysis tools. Reusing existing standards such as 

QUDV and MathML allowed covering the domains adequately, at 

the right level of abstraction, and to reuse tools already developed 

for these languages. 

QAML is well suited for the representation of complex 

quantitative models and would nicely replace Excel data tables 

typically used within hardware component data sheets. Having 

formal data sheets would greatly help in reducing errors during 

MBE design.  

Using QAML with other ADLs is also an interesting perspective, 

although the language has been designed so that little work is 

needed for this. It only requires the development of another 

extension of AMW for the ADL, and the implementation of a Java 

class used by the tool to interact with design models in an 

agnostic manner. All other elements of the tool (editors and model 

interpreters) can be reuse as is. This is possible thanks to MPM 

that drove the design of QAML. 

Finally, generalizing QAML to support non numerical properties 

is also an interesting perspective. In the actual version of the 

language, quantity model parameters can only be of numerical 

type, and parameters expressed as non numerical data types such 

as enumerations must be mapped to numerical values. 
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